Exact trade-off between approximation accuracy and interpretability: solving the saturation problem for certain FRBSs
نویسندگان
چکیده
Although, in literature various results can be found claiming that fuzzy rule-based systems (FRBSs) possess the universal approximation property, to reach arbitrary accuracy the necessary number of rules are unbounded. Therefore, the inherent property of FRBSs in the original sense of Zadeh, namely that they can be characterized by a semantic relying on linguistic terms is lost. If we restrict the number of rules, universal approximation is not valid anymore as it was shown for, including others, Sugeno and TSK type models [10,19]. Due to this theoretic bound there is recently a great demand among researchers on finding trade-off techniques between a required accuracy and the number of rules, and as such, they attempt to determine the (optimal) number of rules as a function of accuracy. Naturally, to obtain such results one has to restrict somehow the set of continuous functions, usually requiring some smoothness conditions on the approximated function. In terms of approximation theory this is the so-called saturation problem, the determination of optimal order and class of approximation. Hitherto, saturation classes and orders have not been determined for FRBSs and neural networks. In this paper we solve the saturation problem for a special type of fuzzy controller, for the generalized KH-interpolator, being a suitable inference method in sparse rule bases.
منابع مشابه
Quest for Interpretability-Accuracy Trade-off Supported by Fingrams into the Fuzzy Modeling Tool GUAJE
Understand the behavior of Fuzzy Rule-based Systems (FRBSs) at inference level is a complex task that allows the designer to produce simpler and powerful systems. The fuzzy inference-grams –known as fingrams– establish a novel and mighty tool for understanding the structure and behavior of fuzzy systems. Fingrams represent FRBSs as social networks made of nodes representing fuzzy rules and edge...
متن کاملInterpretability Improvements to Find the Balance Interpretability-Accuracy in Fuzzy Modeling: An Overview
System modeling with fuzzy rule-based systems (FRBSs), i.e. fuzzy modeling (FM), usually comes with two contradictory requirements in the obtained model: the interpretability, capability to express the behavior of the real system in an understandable way, and the accuracy, capability to faithfully represent the real system. While linguistic FM (mainly developed by linguistic FRBSs) is focused o...
متن کاملOn the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection
In the last years, multi-objective genetic algorithms have been successfully applied to obtain Fuzzy Rule-Based Systems satisfying different objectives, usually different performance measures. Recently, multi-objective genetic algorithms have been also applied to improve the difficult trade-off between interpretability and accuracy of Fuzzy Rule-Based Systems, obtaining linguistic models not on...
متن کاملA fuzzy system index to preserve interpretability in deep tuning of fuzzy rule based classifiers
Following the successful applications of the fuzzy models in various application domains, the issue of automatic generation of Fuzzy Rule Based Systems (FRBSs) from observational data was widely studied in the literature and several approaches have been proposed. Most approaches were designed to search for the best accuracy of the generated model, neglecting the interpretability of FRBSs, which...
متن کاملCan Linguistic Modeling Be As Accurate As Fuzzy Modeling Without Losing Its Description To A High Degree?
In system modeling with Fuzzy Rule-Based Systems (FRBSs), we may usually find two contradictory requirements, the interpretability and the accuracy of the model obtained. As known, Linguistic Modeling (LM)—where the main requirement is the interpretability—is developed by linguistic FRBSs, while Fuzzy Modeling (FM)—where the main requirement is the accuracy—is developed, among others, by approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002